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Final Report on Grant DAAL 03-92-G-0219

“PDE’s, Random Processes and Fields:
Asymptotic Problems”

May 1, 1992 — September 14, 1995

Principle Investigator: Dr. Mark Freidlin
Department of Mathematics
University of Maryland
College Park, MD 20742

Several classes of asymptotic problems for stochastic processes and partial differen-
tial equations were studied under this Grant:

1. Asymptotic problems for classical processes and PDE’s leading to processes on graphs:
random perturbations of dynamical systems, processes and PDE’s in narrow tubes;

9. Wave fronts and other patterns in reaction diffusion equations;
3. Perturbations of PDE’s, homogenization;

4. Asymptotic statistical problems in image reconstruction.

1 Asymptotic problems leading to processes on graphs

The white noise perturbations of Hamiltonian systems on the plane were studied in [2]:

(1) X;=VH(X{) + VW, X;=z€ R

Here W, is the Brownian motion in R?, VH (z) = (2 (z), —2%), 0 < € << 1. Since H(z)
is a first integral for the non-perturbed system (1), H(X7) is changing slowly as € << 1.
In the simplest case, when H(z) has just one minimum and H(z) — oo as |z| — oo, the
slow component in a proper time scale converges weakly to an one-dimensional Markov
process: X7, — Y;. The Markov character of the limiting process allows to calculate the
asymptotics of many interesting characteristics of the process X¢{. In the general case,
when H(z) has many critical points, H(Xj,,) does not converge to a Markov process. A
breakthrough in this problem was made in [2]. A graph T' in the general case can be
connected with the Hamiltonian H(z). This graph “counts” the connected components
of the level sets of H(z). Let Y : R? — T' be the mapping such that Y (z),z € RZ%, is the
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point of ' corresponding to the connected component of the level set of H(z)L containing
z. It is proved in [2] that the process Y (X[) on the graph I' converge weakly in the space
of continuous functions on [0, T] with values in T to a diffusion process Y; on I'. Inside the
edges of T the process Y, is defined by an averaging principle. The behavior at the vertices
is described by special gluing correlations,which are expressed through the Hamiltonian.

A similar result for fast oscillating random perturbations of dynamical systems is

obtained in [9]. Systems of the form
X =b(X¢\6e), Xs=u € R,

where £, is a stationary process with good enough mixing properties, 0 < € << 1, were

considered in [9]. If the averaged system
(2) . 7; = B(Xt), B(l‘) = Eb(ll?lgt), Xt =z,

has a first integral .A(x), then, under certain assumptions, the evolution of the slow com-
ponent should be considered on a graph connected with .A(z). If the system (2) has
£ > 1 first integrals, the graph should be replaced by a phase space consisting of glued
£-dimensional pieces.

A number of generalizations of these problems considered in [4]. In particular,
perturbations of the area-preserving systems on two-dimensional torus is considered there.
In the last case the limiting process on the graph will have a delay at one of the vertices.
Perturbations of the Markov processes with the conservation laws were also considered in
[4].

A number of interesting results concerning the boundary problems for second order
linear elliptic differential equations follow from [1], [2], [9]. These results are related to
behavior of the solutions of the Navier-Stocks equations for the large Reynolds number.

An optimal stabilization problem for a dynamical system with a conservation law,
perturbed by a small white noise, is studied in [11]. The approach developed in [2] allows
to give an explicit description of a control which is not worse than any other control if the

noise is small enough.

It turns our that the processes on graphs and on multidimensional generalizations
of graphs arise in many asymptotic problems. Some other examples of “classical” prob-
lems, leading to processes on graphs, considered in [1], [5]. In particular, the boundary
problems and diffusion processes on narrow tubes were studied there (these results and
their development are mentioned in the next section in connections with RDE’s). The
initial-boundary problems for a class of PDE systems with a small parameter lead to

corresponding problems on graphs.

There are many interesting and important for applications problems in this area,
especially problems concerning systems with several smooth conservation laws.




2 Asymptotic problems for RDE’s

Let T be a graph imbedded in R and G*be the domain consisting of the union of certain
neighborhoods of the edges and the vertices included in I'. Assume that G¢ converges I'
as € } 0. Consider a system of RDE’s in G¢ X [0, 00):

8uk6(7; z) =3 kAuk + fk(x ul, . ,uf‘)’ t>0,z€ GE,
© c
AR) =0,4(0,7) = gi(z), k=1,-
on z€dG*

Such problems arise in the combustion theory, in nerve impulse propagation models and
other applications. One can expect that the solution of (3) converges to the solution of a
proper problem on T as € } 0. Under certain conditions, one can write down the equation
for the limiting function of T inside each edge of the graph. The initial functions for
the limiting problem coincide with the traces of the functions gx(z) on I'. But such an
initial problem on T has no uniqueness : Proper gluing conditions in the vertices should
be added. This problem was considered in [1], [5]. The equations inside the edges and the
gluing conditions were calculated there. The gluing conditions at a vertex 0 essentially
depend on the relation of the order of the size of the neighborhood of 0 in G as € | 0
and the width of the “tubes” connected with 0. The limiting process on I' can have delay
at 0. The vertex 0 under certain conditions can serve as a trap for the diffusing particle:
the particle stays forever at 0 after hitting this vertex. All those types of behavior of the
limiting process lead to various gluing conditions and effect the behavior of the solution
of problem (3) as € << 1. These results also allow to study the wave propagation problem

in domains consisting of narrow tubes.

The Dirichlet problem for the linear reaction-diffusion system with a small parameter
is studied in [7]:

)3 o) gy + L g+ ¢ Z%(m )(u5(2) - ue(@)) =
@
=’l,bk($).

oG

t€GCR; k=1,2,...,n; w(z)

Here ¢,;(z) > 0, 0 < € << 1. Let (q:1(2),...,¢n()) be the stationary distribution for
the Markov process in the finite phase space {1,...,n} with the transition intensities
¢ij(2);0(z) = Yh=y ¢k ()bi(z). The trajectories X, of the vector field b(z) play an impor-
tant part in the limit behavior of (u(z),...,u;(z)) as €l 0. If X, leave G in a finite
time starting from any z € G, we have a counterpart of so called Levinson’s case for one
equation. If X, has an attractor inside G, we have a counterpart of the large deviation
case. These cases and some other considered in [7]. A number of new, in comparison with
the single equation case, effects appear for the systems. For example, values of the bound-
ary functions at the non-regular for the field b(z) part of G can influence the limit of




ug (z) even in the Levinson case. The large deviation principle for the stochastic processes
(Xz,v¢) in R™ x {1,...,n} corresponding to the system (4) plays the main part in [7].

The same large deviation principle allows to study the wave front propagation for a
general RDE-system of Kolmogorov-Petrovskii-Piskunov type:

ai(t) k) _ € r i azue 1 E E
at zgg‘lak (2) grgey + TP (@505, 8)
X ue(0,2) = gi(z) >0,z € R, t>0, ke {l,...,n},

0<e<< .

We assume that a cube [0, B]* C R" is an invariant domain for the flow corresponding
to the vector field F(z,u) = (Fi(z,u), ..., Fu(z,u)) for any fixed z € R", that the origin
is an unstable point of this flow, and that a counterpart of KPP condition for a single
equation holds. Under these conditions, we introduce a non-positive function V (¢, z)
which is defined by the coefficients a} (z), the nonlinear terms Fj(z,u) and the support
of Y p=1 gx(z) such that ‘

liﬂr)lui(t,a:)=0, if V(t,z) <0,
limoi(2) >0, i (t,2) € (V(t,2) = 0)),

where ({V(t,z) = 0}) means the interior of the set {(t,2)} : V(t, z) = 0}. Function
V (t,z) is expressed through the action functional for the large deviations connected with

the process (X§,vf) and through the functions Cy;(z) = ig%ﬂl . These results and

=0
examples of their applications are considered in [8]. Another api‘)roach to the patterns
formation problems got RDE’s, so called large scale approximation for RDE’s, suggested
in [5]. This approach is also based on the limit theorems for large deviations.

3 Perturbations of PDE’s. Homogenization.

Consider a second order elliptic differential operator L¢ depending on a parameter € > 0.
Let X{ be the diffusion process in R corresponding to L¢. There are many results in the
theory of differential equations providing sufficient conditions for convergence of solutions
of initial boundary problems connected with L€ as € | 0 to the solutions of corresponding
problems connected with an operator L. For example, if the coefficients of L€ satisfy the
Lipschitz condition with the same constant K and converge uniformly to the coefficients
of an elliptic operator L, then solutions of certain problems connected with L€ converge
to the solutions of corresponding problems for L. If the coefficients of L¢, say, bounded
and converge only in the weak sense to the coefficients of L as € 1 0, the solutions of the
boundary problems for L¢, in general, will not converge or will converge but not to the




solutions of corresponding problems for L. For example, if

1 & i,z 0%u 2.z, 0
L == V(=)= b (=)=—,
" 2‘.12__;1‘1 (e)ax' x1+§ (e)ax'
and the functions a'(z),b'z are 1-periodic in each variable z!,...,z", the solutions of

Dirichlet problem Lfuf(z) = 0, z € G C R", v (z)|- = (z) converge as € | 0 to a
solution of the same Dirichlet problems for an equation Lu(z) = 0. The operator L has
constant coefficients but different from the operator with coefficients which are the weak
limits of a¥(Z), b'(£) as e | 0.

In terms of stochastic processes the problem consists of finding the conditions on
the diffusion and drift coefficients providing the weak convergence of the processes. A
complete, in a sense, solution of this problem in the one-dimensional case is given in
[3]. As has been known since Feller, any one-dimensional diffusion process is defined by a
couple of increasing functions u(z),v(z): The operator Dyd, f = 4. (4L) is the generator of
the process . If X{ corresponds to (uf,v¢) and X, corresponds to (u,v), then convergence
(tn, vs) to (u,v) at each continuity point is necessary and sufficient condition for the weak
convergence X{ to X, in the space of continuous functions on [0,T], T < oo. The cases of
fast oscillating in z periodic and random (invariant with respect to the shifts) coefficients
are considered in [3] as applications of the general result. Some other applications to the

homogenization problems are considered in [6].

The homogenization problems “on the large deviations level” are considered in {5],
[6], [10]. For example, if ¢ = 1 in system (5), and the coefficients and the non-linear
terms are 1-periodic in all variables z*, one can expect that the propagation of the region
in R where the solution is separated from zero for large t is governed by the Huygens
principle. We calculate the asymptotic velocity field which defines the Huygens principle.
This velocity field is space homogeneous but, in general, not isotropic. Moreover, it cannot
be made isotropic by a linear transformation of the coordinate system. This means that
the limiting (for t — oo) behavior of the front is different from the behavior of the front
for equations with space homogeneous coefficients and nonlinear terms. Thus there exist
no “effective” equations with constant coefficients which approximate for large t motion
of the front in the periodic medium. The homogenization in this problem does not lead
to equations with constant coefficients, as in the homogenization problems for “normal
deviations”. Wave front propagation problems with several small parameters considered
in [5], [10] as well.

The work of my graduate student J. Dunyak was supported from that grant. Ho-
mogenization problems for reaction-diffusion equations were considered in his thesis [12]
and in [13]. The propagation of wave fronts in the periodic media with “holes” is stud-
ied there. A number of results concerning homogenization of the boundary conditions
included in [12] as well.




4 Asymptotic problems in image reconstruction.

The asymptotic problems for RDE’s suggest a number of models of domain growth in R",
or, in general, of domain time evolution. For example, as was shown in [8], the domain,
where the solution is separated from zero, under certain conditions grows according to the
Huygens principle. The boundary of the domain can move with the speed proportional to
the mean curvature of the boundary under other conditions. The evolution of the domain

can be governed by a flow.

Suppose the evolution of a domain is observed in a noise with given statistical
characteristics. How can one reconstruct the evolution of the domain? How can one
estimate the time when the domain started to grow if the evolution of the domain is

observed in a noise?

The first question was considered in [15]. We assume that the evolution of domains
G, C R? is governed by a flow, and we observe Y*(¢,z), € R?, 0<t<T:

(6) dY*(t,z) = I[G,]dtdz + edW (t, z),

Here I(G) is the indicator function of G C R?, W (t,z) is the Brownian sheet in R3.

If éf, 0 < t < T, is the estimator for the domain evolution G, we define the distance

between G, and G¢ as the Lebesgue measure of the symmetric difference
t
0G5, G) = / mes(GSAG,)dt.
0

Close upper and lower bounds for the minimax risk are established in [15] for 0 < e << 1.

Suppose now the domain G, C R? does not change up to an unknown time 7, €
[To, T], and then G, starts to grow. Let our observation again be defined by equation
(6), and we want to estimate the change point. This question is studied on [14] in the
'small noise asymptotics. Two problems are discussed there: First one deals with the case
when the domain’s area S(t) suffers a jump at the time 7. The second problem concerns
the case when S(t) is changing continuously and just the derivative d—it@ has a jump for
¢t = r. First, we construct asymptotically optimal in the minimax sense estimators in the
case of reduced observations, when just evolution of the area of the domain is observed
in the noise. Then we consider the estimators for 7 using the whole information about
the domain evolution. We discuss also in [14] some change point problems for growing

domains when the observations are made in discrete time.
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